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Abstract—An efficient synthesis of [1,3]oxazino[2,3-a]quinoline derivatives via a three-component reaction of quinoline, DMAD
and carbonyl compounds is described.
� 2007 Elsevier Ltd. All rights reserved.
The Huisgen 1,3-dipolar cycloaddition constitutes a
versatile protocol for the construction of a variety of
five-membered heterocycles.1,2 Huisgen’s initiatives
towards developing an analogous strategy for the syn-
thesis of six-membered heterocycles using 1,4-dipoles,3

however, received only limited attention. Except for iso-
lated reports,4,5 such reactions have remained largely
unexploited.

In recent years, we have explored the reactivity of zwit-
terions derived from dimethyl acetylenedicarboxylate
(DMAD) and nucleophiles such as phosphines,6 isocya-
nides,7 dimethoxycarbene,8 nitrogen heterocycles9 and
N-heterocyclic carbenes (NHCs).10 These studies have
led to a number of interesting carbon–carbon bond
forming reactions and heterocyclic constructions.11 Inter
alia we were intrigued by the drastically different reactiv-
ity patterns exhibited by the pyridine–DMAD zwitter-
ion and the isoquinoline–DMAD zwitterion. Whereas
the pyridine–DMAD zwitterion induced novel mole-
cular rearrangements,9a,b the isoquinoline–DMAD
zwitterion engaged exclusively in three component reac-
tions.9c–e Thus we decided to investigate the reactivity of
the zwitterion12 generated from quinoline and DMAD
towards electrophiles. To the best of our knowledge, this
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zwitterion has not been investigated from such a vantage
point. In this Letter, we report the preliminary results of
our investigations on trapping the quinoline–DMAD
zwitterions with aldehydes and 1,2-diones leading to
novel oxazinoquinoline derivatives.

In an initial experiment, a solution of 4-trifluoromethyl-
benzaldehyde 3a, DMAD 2 and quinoline 1, in dry tolu-
ene under argon, was taken in a sealed tube and the
mixture was heated. Removal of the solvent followed
by column chromatography afforded an inseparable dia-
stereomeric mixture of [1,3]oxazino[2,3-a] quinoline
derivatives 4a and 5a in 92% yield, in the ratio 4:1
(Scheme 1).

The major diastereomer 4a was crystallized from the
mixture and was subsequently characterized by spectro-
scopic analysis.13 The methoxycarbonyl protons reso-
nated as sharp singlets at d 3.60 and 3.90, supporting
the IR absorption at 1732 cm�1. The ring junction
proton signal was observed as a doublet at d 5.24
(J = 4.2 Hz) and the benzylic proton displayed a singlet
at d 5.58. The signals due to the olefinic protons of the
dihydroquinoline moiety were visible as a double dou-
blet at d 5.71 (J1 = 4.2 Hz, J2 = 9.6 Hz) and as a multi-
plet in the region d 6.95–7.00. The 13C NMR spectrum
displayed the characteristic signals of the ester carbonyls
at d 163.9 and 165.3. Final confirmation of the structure
and stereochemistry of 4a was obtained from single crys-
tal X-ray analysis (Fig. 1).14
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Figure 1. ORTEP diagram of compound 4a.

Table 1. Addition of the quinoline–DMAD zwitterions to aldehydes
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4(b-g)  and   

12 h

1 2

H
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Entry R Product Ratio Yield (%)

1 3,4-Difluorophenyl 4b/5b 6:1 74
2 3,4-Dichlorophenyl 4c/5c 4:1 72
3 4-Bromophenyl 4d/5d 4:1 82
4 4-Chlorophenyl 4e/5e 4:1 78
5 2-Chlorophenyl 4f/5f 6:1 45
6 3-Nitrophenyl 4g/5g 6:1 75
7 4-Nitrophenyl 4h/5h 6:1 88
8 2-Naphthyl 4i/5i 4:1 77
9 2-Furyl 4j/5j 4:1 29

10 2-Thienyl 4k/5k 4:1 35
11 4-Methoxyphenyl 4l/5l 2:1 30
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Scheme 1. Reagents and conditions: (i) Toluene, sealed tube, 110 �C, 12 h.
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Analogous reactions were observed with other aromatic
aldehydes, and the results are presented in Table 1.

A mechanistic rationalization for the reaction is given in
Scheme 2. The reaction can be considered to proceed via
the initial formation of the 1,4-dipolar intermediate 6
from quinoline and DMAD, followed by its trapping
with the aldehyde, to give the corresponding oxazino-
quinoline derivative. However, a two-step process
involving the intermediacy of alkoxide 8 cannot be ruled
out.

In view of the interesting results obtained by the trap-
ping of quinoline–DMAD zwitterions with aldehydes,
we next focussed our attention on reactions with 1,2-
diones. In an initial experiment, 2,2 0-thenil 9a, DMAD
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Scheme 2.
2 and quinoline 1 were heated in a sealed tube in dry tolu-
ene. Interestingly, the reaction afforded a single diaste-
reomer 10a in 52% yield (Scheme 3).

The structure of product 10a was ascertained by spectro-
scopic methods.15 In the 1H NMR spectrum, signals due
to the methoxycarbonyl protons were observed as sharp
singlets at d 3.77 and 3.83. The ring junction proton was
discernible as a doublet at d 5.40 (J = 4.4 Hz). The ole-
finic protons of the dihydroquinoline moiety were visible
as a double doublet at d 5.83 (J1 = 4.4 Hz, J2 = 9.8 Hz)
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Scheme 3. Reagents and conditions: (i) Toluene, sealed tube, 110 �C, 12 h.
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and as a multiplet in the region d 6.71–6.68. The 13C
keto carbonyl resonance signal occurred at d 188.1 and
the methoxycarbonyls at d 165.2 and 163.6. In the IR
spectrum, the ketone carbonyl absorption was observed
at 1720 cm�1 and the ester carbonyl absorption at
1737 cm�1. Conclusive evidence for the structure and
stereochemistry of 10a was obtained by single crystal
X-ray analysis (Fig. 2).14

The reaction was applicable to a number of other diaryl
1,2-diones 9b–h, affording the oxazinoquinoline deriva-
tives 10b–h in moderate yields (Table 2).
Figure 2. ORTEP diagram of compound 10a.

Table 2. Addition of the quinoline–DMAD zwitterions to 1,2-diones

R
R
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N O
R

O

R

MeO2C

MeO2C
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9b-h

10b-h

toluene
110 °C, 12 h

1 2

Entry R Product Yield (%)

1 4-Fluorophenyl 10b 65a

2 4-Trifluoromethylphenyl 10c 62a

3 3,4-Difluorophenyl 10d 61a

4 3,4-Dichlorophenyl 10e 61a

5 4-Chlorophenyl 10f 60a

6 Phenyl 10g 55a (70)b

7 4-Methylphenyl 10h 53a (70)b

a Isolated yield.
b Yield based on recovered starting material.
A mechanistic postulate analogous to that suggested for
the reaction of aldehydes can be invoked to explain the
formation of oxazinoquinoline derivatives 10a–h. Fur-
ther work will be undertaken to examine the scope of
the reactions described herein.

In conclusion, we have devised an efficient strategy for
the synthesis of a variety of oxazinoquinoline
derivatives.
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